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Distinction of surgically resected 
gastrointestinal stromal tumor 
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The diagnosis of gastrointestinal stromal tumor (GIST) using conventional endoscopy is difficult 
because submucosal tumor (SMT) lesions like GIST are covered by a mucosal layer. Near‑infrared 
hyperspectral imaging (NIR‑HSI) can obtain optical information from deep inside tissues. However, 
far less progress has been made in the development of techniques for distinguishing deep lesions like 
GIST. This study aimed to investigate whether NIR‑HSI is suitable for distinguishing deep SMT lesions. 
In this study, 12 gastric GIST lesions were surgically resected and imaged with an NIR hyperspectral 
camera from the aspect of the mucosal surface. Thus, the images were obtained ex‑vivo. The site of 
the GIST was defined by a pathologist using the NIR image to prepare training data for normal and 
GIST regions. A machine learning algorithm, support vector machine, was then used to predict normal 
and GIST regions. Results were displayed using color‑coded regions. Although 7 specimens had a 
mucosal layer (thickness 0.4–2.5 mm) covering the GIST lesion, NIR‑HSI analysis by machine learning 
showed normal and GIST regions as color‑coded areas. The specificity, sensitivity, and accuracy of the 
results were 73.0%, 91.3%, and 86.1%, respectively. The study suggests that NIR‑HSI analysis may 
potentially help distinguish deep lesions.

Gastrointestinal stromal tumor (GIST) is a submucosal tumor (SMT) originating from the digestive tract, and 
its predominant sites are the stomach (60%) and the small bowel (30%)1. Although some cases of GIST are dis-
covered after initial symptoms such as pain, gastrointestinal (GI) bleeding, and bowel obstruction, most cases 
are asymptomatic and are revealed by GI examinations, including endoscopy.

In cases of gastric GIST, endoscopic examination is the primary tool for detection; the lesion first appears as 
an SMT. Clearly, this direct observation cannot differentially diagnose the SMT, because the lesions are mostly 
submucosal. Biopsies may have a low diagnostic yield, because the lesions are often deep and access is  difficult2. 
Although endoscopic ultrasound-guided fine needle aspiration is a useful method for  biopsy3,4, it can be techni-
cally demanding. Moreover, the definitive diagnosis of GIST requires time-consuming immunohistochemical 
 procedures5. Thus, it would be desirable to develop a high-throughput simple diagnostic technique to identify 
GIST located under the mucosa. To this end, we suggest that near-infrared hyperspectral imaging (NIR-HSI) has 
the potential to become a key technology for diagnosing SMTs that are present deep within organs.
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The NIR spectrum, ranging in wavelength from 800 to 2500 nm (wavenumber range: 12,500–4000 cm−1), 
has properties that makes it especially useful for  bioimaging6. NIR light is less scattered by biological tissues 
than ultraviolet or visible light, and radiation absorption by water is much lower in the NIR spectrum than in 
the mid-infrared  spectrum7. This tends to make tissues transparent to NIR wavelengths (~ 1 cm)8. Thus, the 
high transparency in the NIR spectrum makes non-destructive, non-invasive spectroscopic investigation of 
 plants9 and human subjects  possible10–16. Furthermore, NIR radiation excites biomolecules with an absorption 
level 100 times weaker than the wavelengths in the visible or mid-infrared spectrum. This allows safe and direct 
investigation of biomolecules in vivo. HSI is a potent imaging modality, that provides spectroscopic informa-
tion with high spatial resolution (precision of measurement)10–16 and has been applied to various research fields, 
including distinction of epithelial tumors such as gastric cancer, without the use of fluorescent  probes17. HSI using 
a machine-learning algorithm not only allows the acquirement of spectral information in each pixel of image 
data, but also the extraction of critical imaging data from large amounts of hyperspectral  images18,19. However, 
very little progress has been made in the development of techniques for distinguishing deep lesions like GIST.

In this study, we aimed to investigate whether as a novel, minimally invasive diagnostic technique using GIST 
specimens, the NIR-HSI is suitable for the distinction of deep lesions.

Results
Fourteen patients were screened, among whom 12 patients (10 men and 2 women) were enrolled and 2 were 
excluded (NIR-HSI images were acquired from the serosa side only). Their median age was 68 years (range 
41–81 years). The median tumor size was 41 mm (range 24–80 mm). Endoscopic images of the lesions and 
pictures of excised 12 GIST specimens are shown in Fig. 1A,B. Figure 2A show pictures of 12 GIST specimens, 
captured by NIR-HSI. It can be seen that 7 specimens (a–d,f,g,j in Fig. 2A) were completely covered with mucosa, 
and 3 specimens (h,I,k in Fig. 2A) were partially covered with mucosa. In Fig. 2B, the boundary line of each 
lesion and bounding boxes have been drawn as described. Specimens presented in Fig. 2B(a–d) had both, GIST 
and normal tissue, including mucosa. Specimens shown in Fig. 2B(e–g) had GIST and other normal tissue, such 
as adipose tissue and submucosa, while all specimens presented in Fig. 2B(h–l) were GISTs.

On the basis of training data, analysis of the spectra in HSI images was performed using the SVM algorithm, 
and GIST and normal regions were identified. The pixels that predicted GIST were colored green, while normal 
tissues were colored yellow. In Fig. 3, the upper images in (a–l) show the color-coded pixels predicted as GIST 
and normal tissue. The lower images in (a–l) were merged to include the pathologist’s boundary line, and the 
pixel areas used for the prediction-accuracy calculation can be seen. In the analyzed results, total pixels (371,053 
px) were classified as follows: TP: 242,052 px, FN: 23,062 px, FP: 28,579 px, and TN: 77,360 px. From the clas-
sified pixels, the specificity, sensitivity, and accuracy were calculated as 73.0%, 91.3%, and 86.1%, respectively. 
The full results are listed in Table 1. The specimens in (h,l) were excluded from calculation of FPR and specificity, 
because they have only GIST regions.

Figure 4 shows microscopic images of GIST specimens stained by H&E staining. The black arrows indicate 
the upper border of GIST lesions. The depth from the surface of the mucosa to the upper border of the lesions 
was 0.4–2.5 mm (a–d,f,g,j). The diagnosis of GIST was confirmed by immunohistochemical analysis. Eleven 
specimens (a–k) were c-kit positive and 1 specimen (l) was c-kit and CD-34 negative, but DOG-1 positive.

Discussion
To the best of our knowledge, this is the first report demonstrating the distinction of SMT using NIR-HSI. In this 
study, GIST lesions were predicted with 86.1% accuracy in 12 specimens using the machine-learning algorithm. 
The number of GIST specimens in this study was relatively small, because it is an extremely rare disease with 
an incidence of 1–2 in 100,000 people per  year20. However, in this study, NIR-HSI captured pixels (total pixel: 
371,053 px) were classified using the leave-one-out cross-validation procedure. Therefore, the sample size is 
considered to be sufficient, and its generalizability has been demonstrated. In addition, GIST is thought to arise 
from clonal expansion of transformed interstitial cells of Cajal in the stomach  wall21, and are expected to show 
little variation in terms of histology. Therefore, we believe that the number of GIST specimens in this study was 
adequate for distinguishing GIST from normal mucosa.

Considering the results in the view of distinction of deep lesion, 10 of 12 specimens were completely or 
partially covered with mucosa, and the submucosal GIST lesions were identified using our method. This sug-
gests that some GIST specific spectra information can be distinguished by NIR transparency. However, from 
the spectra (shown in Fig. 5B), we can infer that the difference between an NIR image of a GIST lesion and that 
of normal tissue may be difficult to distinguish from raw data of the NIR-HSI scan, as the spectra of GIST and 
normal tissue are similar. Therefore, to predict the site of the GIST lesion, machine-learning analysis with its 
datasets of GIST and normal reference images is essential.

The specificity and sensitivity of GIST distinction were 73.0% and 91.3%, respectively. In a previous study, 
Akbari et al. reported on the prediction of gastric cancer lesions on the mucosa, using  SVM17. The results showed 
a specificity and sensitivity of 80% and 73%, respectively. Our results were similar, even though the lesions in 
our study were submucosal.

Although the border between GIST and normal tissue can be seen relatively clearly (Fig. 3), some analyzed 
specimens had high FNR or FPR. In the case of low-specificity specimens, such as those presented in Fig. 3a,d 
(53.7 and 68.7%, respectively), the green area outside the blue border line can be found largely at the edge of the 
specimens. This suggests that the NIR absorbance was poor, because the tissue at the edge was thin. However, 
there will be no edge in vivo; therefore, the impact of this effect can be reduced. In the case of the low sensitiv-
ity specimen (Fig. 4f [59.8%]), the lesion was covered with over 2 mm of mucosa and submucosa. We suggest 
that the NIR absorbance information of the lesion was reduced because of the thickness of the covering tissue. 
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In addition, the lesion was the smallest (5824 px) of all the specimens; hence, we considered that even a small 
number of FN pixels may have affected the sensitivity. In any specimen, uneven surfaces can cause shadows 
and scattering of the NIR radiation, which lead to FN and FP errors. For example, the specimen presented in 
Fig. 2A(l) has an uneven surface and a relatively high FNR (25.6%). To diagnose smaller lesions and improve 
accuracy in the future, the following areas of improvement have been identified: creation of a much larger training 
dataset, addition of depth-of-lesion information to training data, and capture of high quality data by scanning 
lesions on as smooth a surface as possible.

Some SMT that need to be differentiated from GIST are myogenic tumors, such as leiomyoma and leio-
myosarcoma, neurogenic tumors, including schwannoma and neurofibroma, and vascular  tumors22. Owing 
to the limitations of conventional endoscopy, other techniques, such as endoscopic ultrasonography, contrast-
enhanced computed tomography, or MRI, may be helpful in the diagnosis. High-risk features obtained by these 
techniques, such as irregular borders, homogeneous internal echoes including anechoic areas and heterogeneous 

Figure 1.  Endoscopic view and photographs of excised specimens of GIST. (A) (a–k) GIST can be seen as 
SMT protruding into the gastric lumen. (A) (l) SMT cannot be seen with an endoscope. (B) (a–l) Visible light 
photographs of specimens captured by a digital camera. GIST gastrointestinal tumor, SMT submucosal tumor.
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enhancement, are known to be highly associated with GIST or malignant SMT. However, none of these features 
are specific for either  condition23.

Development of an endoscopic NIR-HSI system is under way. It will enable clinicians to identify GISTs 
and differentiate them from other gastric SMTs. Moreover, it is anticipated that such a device can be applied 
to qualitative diagnosis of the extent and depth of epithelial tumors. Another area of interest for the future is 
the estimation of GIST malignancy. The genetic mutations in GIST are well correlated with imatinib  activity23. 
For example, KIT exon 11 mutated GISTs are very sensitive to imatinib, while wild-type GIST (defined as GIST 
without any mutations in the KIT and PDGFRA genes) is insensitive to imatinib, and has a poor  prognosis23. 
Obtaining such information before treatment could offer great benefits in selecting the best treatment and 
predicting the prognosis.

The main limitation of the study was that gastric SMTs other than GIST were not analyzed. The SMTs that we 
studied were limited to surgical specimens with a confirmed diagnosis of GIST. In clinical practice, it is important 

Figure 2.  NIR image and preparation of training data. (A) (a–l) Pseudo-colored pictures of specimens captured 
by Compovision (NIR camera) (R: 1065 nm, G: 1280 nm, B: 1981 nm). (B) (a–l) Boundary line between GIST 
and normal region drawn by pathologist (blue), and bounding boxes for training data (green: normal tissue, 
white: GIST). NIR near-infrared, GIST gastrointestinal tumor.
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Figure 3.  GIST region prediction analyzed by machine learning. ((a–l) upper images) The whole specimen. 
((a–l) lower images) Merging of color-coded pixels and NIR picture with boundary line drawn by pathologist. 
The color-coded pixels near the boundary line were excluded. GIST gastrointestinal tumor, NIR near-infrared.

Table 1.  Prediction results of NIR-HSI analysis for the submucosal GIST region. NIR near-infrared, HSI 
hyperspectral imaging, GIST gastrointestinal tumor, W width, D diameter, H height, FPR false-positive rate, 
FNR false-negative rate.

No. Specimen size (W × D × H) Total pixel number FPR (%) FNR (%) Specificity (%) Sensitivity (%) Accuracy (%)

(a) 73 × 55 × 48 54,909 46.3 9.1 53.7 90.9 79.7

(b) 40 × 36 × 19 12,441 25.0 0.1 75.0 99.9 87.8

(c) 41 × 40 × 29 29,200 19.1 3.7 80.9 96.3 94.0

(d) 26 × 20 × 20 27,933 31.3 1.1 68.7 98.9 78.1

(e) 68 × 44 × 40 78,350 25.5 9.0 74.5 91.0 82.9

(f) 24 × 19 × 18 20,794 9.5 40.2 90.5 59.8 81.9

(g) 30 × 25 × 25 17,095 20.9 1.0 79.1 99.0 91.6

(h) 31 × 30 × 21 7930 – 6.7 – 93.3 93.3

(i) 77 × 54 × 48 49,779 – 0.8 – 99.2 99.2

(j) 32 × 28 × 25 10,544 – 1.1 – 98.9 98.9

(k) 80 × 52 × 48 51,885 – 17.0 – 83.0 83.0

(l) 44 × 28 × 25 10,193 – 25.6 – 74.4 74.4
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to be able to differentiate GISTs from other gastric SMTs by endoscopy; therefore, the analysis of other SMTs 
will be necessary. We have now developed an NIR-HSI device, that can be inserted into the instrument port of 
an endoscope (ø 3.2 mm), and have successfully performed NIR-HSI scans. We expect to perform endoscopic 
NIR-HSI analysis in the near future.

Figure 4.  Histopathological observations of GIST by H&E staining (×5). (a–d,f,g,j) The tumor (black arrows) 
located in the submucosal layer. (e,h,i,k,l) the tumor not covered by normal mucosa. GIST gastrointestinal 
tumor.

Figure 5.  NIR-HSI system and absorbance spectra. (A) Setup of NIR-HSI system. (B) NIR absorbance spectra 
of HSI pixels of the GIST (Red) and normal (Black) regions. NIR near-infrared, HSI hyperspectral imaging, 
GIST gastrointestinal tumor.
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In conclusion, this study showed that, NIR-HSI analysis aided by machine-learning can identify differences 
between GIST and normal tissue with high prediction accuracy, specificity, and sensitivity. These results, indicate 
great potential for the clinical use of NIR-HSI in the diagnosis of SMT such as GIST.

Methods
Collection of surgical specimens and definitive diagnosis. Patients with clinically diagnosed GIST 
who underwent surgery between April 2016 and March 2018 were examined in this study. The inclusion criteria 
were: (i) clinical diagnosis of GIST; (ii) age of 20 years or older; and (iii) written informed consent for this study. 
The exclusion criteria were: (i) a history of prior chemotherapy; (ii) presence of hepatitis B virus surface antigen 
or hepatitis C virus antibody; and (iii) judged inappropriate for this study, such as improperly captured images. 
The indications for surgery were according to clinical practice guidelines for GIST in  Japan20. This study was 
approved by the Institutional Review Board of the National Cancer Center Japan (approval no. 2015-339) and 
conforms to the provisions of the Declaration of Helsinki and the Epidemiological Study Guideline issued by the 
Japan Ministry of Health, Labor, and Welfare. All patients provided written informed consent before inclusion.

Near‑infrared hyperspectral image capture. An imaging system with a high-speed NIR hyperspec-
tral camera (Compovision, CV-N800HS; Sumitomo Electric Industries, Ltd., Osaka, Japan) was used to obtain 
NIR-HSI images (wavelength: 1000–2350 nm; wavelength resolution: 6.3 nm). The detector (NIR spectroscopic 
camera), captured data values for each wavelength band, on each pixel per line of the image, in one scan. By 
scanning multiple lines (by sliding the sample stage), three-dimensional HSI images (x–y–λ axes) were obtained, 
producing a virtual “data cube” for processing and analysis. A schematic illustration and spectral data obtained 
are shown in Fig. 5A,B. An aluminum plate with a collimating slit was placed between the halogen lamp and the 
tissue sample to prevent damage to specimens by heat.

Each of the fresh specimens which are resected from stomach were placed on the sliding stage without 
trimming, and NIR-HSI images were acquired from the mucosal side under illumination from a halogen lamp 
(0.96 W/cm2). The resultant temperature rise was up to 3.3 °C. The integration time and frame rate for each 
wavelength band was set at 2.5 ms and 320 frames/s, respectively. Visible light images of the fresh specimens 
were also captured by a digital camera. The acquired raw images were calibrated using white and dark reference 
images. After capturing the NIR-HSI images, all surgical specimens were fixed with formalin, stained with H&E, 
and subjected to immunohistochemical examinations, including c-kit, CD34, and, if necessary, Discovered On 
GIST-1 (DOG1).

Machine learning. In the machine learning part of the study, NIR-HSI images of all specimens were used 
as the dataset for analysis. Spectra of > 1600 nm wavelength were removed from the analysis because of lower 
sensitivity of the NIR camera and high absorption by water in those bands. In addition, in the 1300 nm spectra, 
reflectance rates of over 70% and below 10% were defined as highlights and shadows, respectively, and these 
pixels were removed from the dataset.

To create two regions showing pixels of normal mucosa and of the GIST lesion, a boundary line was drawn 
by a pathologist. The areas inside and outside were defined as “GIST” and “normal,” respectively. Bounding 
boxes were made, guaranteed to be GIST or normal tissue, and the spectra of each were used as training data 
for the algorithm.

Leave-one-out cross-validation was employed, because it is suggested that the procedure provides an almost 
unbiased estimate of the generalization  ability24. In the leave-one-out cross-validation procedure, data sets are 
constructed excluding training data of a specimen for testing.

A machine learning algorithm, support vector machine (SVM), has often been found to provide higher clas-
sification accuracies than the maximum likelihood and the multilayer perceptron neural network classifiers in 
HSI  classification25. Therefore, SVM was employed. This algorithm works by solving an optimization problem 
as  follows26:

where the decision function is

This optimization problem is solved by a decomposition  method27. In this study, we used C = 1 and the RBF 
kernel as follows:

where the optimal values of the hyper-parameter of σ2 are estimated as follows:
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In NIR spectral measurement, it is reported that variance is caused, such as non-specific scatter at the surface 
of the  sample28. To reduce the variance, the standard normal variate (SNV) was used for baseline correction of 
the spectrum as follows:

where x is a row vector containing the original spectrum, mean(x) is the mean of x, std(x) is the standard devia-
tion of x, and z denotes the SNV-transformed spectrum.

Calculation of prediction accuracy. To evaluate prediction accuracy, the coordinates of the prediction 
pixels were compared with boundary line images; the pixels were classified in to four groups as follows: GIST 
is predicted as GIST (true-positive: TP), GIST is predicted as normal (false-negative: FN), normal is predicted 
as GIST (false-positive: FP), normal is predicted as normal (true-negative: TN). From the classified pixels, the 
false-positive rate (FPR) and false-negative rate (FNR) can be calculated; the specificity, sensitivity, and accuracy 
were defined as follows:

For the accuracy calculation, the thickness of the boundary line was doubled both, on the inside and on the 
outside of the line, and the data found were excluded because the boundary line was drawn freehand by the 
pathologist, and was therefore susceptible to error.
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